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Abstract 

T h i s  paper presen t s  a n e w  computat ional  s cheme  
based o n  mult iresolut ion decomposition for extracting 
t h e  features  of interest  f r o m  t h e  oceanographic images 
by suppressing t h e  noise.  T h e  multiresolution analysis 
f r o m  t h e  m e d i a n  presented by Starck-Murtagh-Bijaoui 
[4][5] is used for t h e  noise  suppression. 

A parallel approach is presented f o r  this computa-  
t ionally intensive problem of infrared images.  

Keywords:  Edge detection, multiresolution, wavelet  
transform,  feature extraction, image  processing, noise  
suppression. 

1 INTRODUCTION 

Exploiting of concurrency is a central and impor- 
tant problem in many computational intensive appli- 
cations. One such application is the extraction of fea- 
tures for oceanographic images. Oceanographers re- 
quire accurate methods of tracking features in satel- 
lite images of the ocean in order to ‘observe and quan- 
tify surface layer dynamics. Infrared (IR) images of 
the ocean that depict the sea sur€ace temperatures 
are widely used for such studies. The task of au- 
tomatic feature tracking from time series of satellite 
IR images mainly poses the two problems. First, the 
features of interest have weak edges and constantly 
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evolving shapes from image to image. Features merge, 
split, grow, shrink, disappear, or are created on time 
scales that are comparable to the sampling interval 
of the satellite imager (typically 12 hours). In other 
words, the phenomenology under investigation is tur- 
bulent fluid flow, not rigid body motion. Therefore, 
the tracking of ocean features presents a very difi- 
cult problem. The second problem, which results from 
the first one, is that the feature “motion” cannot be 
defined by a single set of values representing trans- 
lation, rotation and scaling. Different motions occur 
at  different spatial scales. Thus the motion must be 
defined by parameters that are functions of scale as 
well as space and time. A simple example of different 
motions associated with different scales is seen in the 
ocean “front”. Most ocean fronts exhibit shear across 
the frontal boundary. Shear results in small lobes 
(shear instabilities) on the front which moves along 
the frontal boundary. Concurrently, the entire frontal 
feature may be moving perpendicular to the boundary 
direction. This scenario results in small scale and large 
scale motions that are orthogonal. A feature tracking 
algorithm based on the solution of rigid body prob- 
lems will lead a result that represents some unknown 
mixture of these two orthogonal motions. Clearly, an 
efficient algorithm to resolve these two orthogonal mo- 
tions is required. This is one aspect of the problem 
where concurrency can be exploited. 

The wavelets have proven to provide an efficient 
technique for studying dynamic images. The wavelet 
transform, because it is able to localize signal in both 
space and frequency, maybe useful for addressing the 
problem of feature tracking in oceanographic images 
[7]. This paper deals with the problem of wavelet- 
based feature extraction. This is the first step in a 
feature tracking problem. We expore a parallel com- 
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putational technique to this problem defined in our 
earlier paper on feature detection problem [6]. 

An important feature of the wavelet transform is 
the facility of characterization of the local regularity of 
a function, with important applications to texture dis- 
crimination in images. The wavelet transform can be 
generalized to any number of dimensions, but for the 
purpose of image processing only the two-dimensional 
case suffices. The wavelet transforms are able to cap- 
ture the features of images a t  all resolutions. Thus, 
there is no limitation on the fineness of the recoverable 
image. This gives rise to a very important method of 
observing at  and analyzing an image in terms of suc- 
cessive levels of resolutions. 

Multiresolution decomposition involves decomposi- 
tion of an image in frequency channels of constant 
bandwidth on a logarithmic scale. Multiresolution 
transforms have been the focus of extensive study soon 
after the work on multiscale edge detection by Rosen- 
feld and Thurston[3]. The details of an image charac- 
terize different types of physical features at  different 
scales. While at  a coarse resolution, one can distin- 
guish the gross shapes of the large objects in an image. 
For a detailed analysis see [6]. 

2 The Discrete Wavelet Transform 

Mallet’s wavelet transform 
A discrete wavelet transform approach can be ob- 
tained from multiresolution analysis (Mallet 1989). A 
multiresolution analysis is a set of closed, nested sub- 
spaces generated by interpolations at  different scales. 
A function f(x)  is projected at each step j onto the 
subset 5. This projection is defined by the scalar 
product c j ( k )  of f(z) with the scaling function 4(z) 
which is dilated and translated by 

Cj(k )  = (f(x),  2+4(2-?x - k ) ) .  (1) 

4(z) is a scaling function which has the property: 

Equation (2) permits the set cj+l (IC) to be computed 
directly from c j ( k ) .  If we start from the set co(lc) we 
compute all the sets c j ( k )  with j)O, without directly 
computing any other scalar product. That is, 

cj+l(IC) = h(n - 2k)c j (n) .  
n 

(3) 

At each step, the number of scalar products is divided 
by 2 .  At each step, the signal is smoothed and the 

information is lost. The remaining information can 
be restored using the complementary subspace Wj+l 

of Vj+l in Vj. The subspace can be generated by a 
suitable wavelet function $(x) with translation and 
dilation, 

(4) 

Wj+l ( k )  = g(n - 2k)cj(n). ( 5 )  
n 

In order to restore the original data, Mallet used the 
properties of orthogonal wavelets. But, the theory has 
been generalized to a larger class of filters (Cohen- 
Daubechies-Feauveau, 1992). Two other filters h and 
j ,  the conjugates of h and g,  respectively, have been 
introduced (Daubechies, 1992) and the restoration is 
performed using 

L 

This analysis can be easily extended to the case of 
two dimensions. However, the two-dimensional algo- 
rithm is based on separable values leading to x and y 
directions being prioritized. This will lead to a non- 
isotropic analysis of the images which is not an efficient 
way to extract fine features in the oceanographic im- 
ages. 

3 Starck-Murtagh-Bijaoui wavelet 
transform [6] 

We present some of our earlier results [6]. The prob- 
lems mentioned earlier led to the development of other 
multiresolution tools. Starck-Murtagh-Bijaoui[4][5] 
modified the “a trous algorithm” and developed a new 
multiresolution approach using morphological median 
filter. The algorithm is as follows: 

begin { 

1. Define a mask Mt with a size t .  

2. Initialize j to 0, and start from data CO. 

3.  med being the filtering median function, com- 
pute cj+l = m e d ( M t ,  fj) and median coefficients at  

534 



scale j by wj+l = cj  - cj+] 

4. If j is less than the desired number of scales, 
return to 3 .  

} end 

The reconstruction is carried out by a simple addition 
of all scales: 

j 

We use the above algorithm to analyze and suppress 
the noise in the image at various scales. 

Edge detection is an operation of locating the transi- 
tion between two regions of distinct gray level prop- 
erties. In the oceanographic images a region that ap- 
pears to have a single gray level may actually contain 
several adjacent gray levels. That appear to be the 
same is the visual quantization of the observer. Based 
on this observation we present the following simple 
edge detection algorithm: 

A simple edge-detection algorithm [6] 

begin { 

1. Scan the image with a 3 x 3 empty window. 

2. On each move of the window compute the G,,,, 
the maximum value in the window, and Gmin, the 
minimum value in the window. 

3 .  If G,,, - G,in is less than the threshold T I  
replace the central pixel with zero. Else move the 
window. 

4. The set of all remaining points, Ej is the edge 
detected image. 

} end 

The selection of the threshold in the third step is 
the most sensitive part of this algorithm. The choice of 
the threshold (usually a number between 0 and 255) 
depends on the image. Since the changes in inten- 
sity occur at different scales in an image, their opti- 
mal detection requires the use of operators of different 
thresholds. If the difference between the intensities of 
the regions in the image is small, a smaller threshold 
is required. And if the difference is large, a higher 
threshold can be used. 

We can define a multiresolution approach for edge 

detection at  different scales. A multiresolution analy- 
sis is defined as a closed nested set of subspaces. Let 
Ej be the set of edges in an image at  the resolution j ,  
such that 

Ej = edge(I,, T j )  (8) 
where I, is the original image, Tj is the threshold and 
edge is the set of edges obtained using the above al- 
gorithm. 

As we increase the resolution (to a finer resolution) 
to j = j - 1 and T = T - t where t is a small number, 
the number of edges detected will increase as more and 
more fine edges can be detected. As we decrease the 
resolution the number of edges detected will decrease. 
The information that is lost as we move to a coarser 
resolution can be restored using the complementary 
subspace Wj+l of V,+l in V, using 

Wj+l = Ej - Ej+l. (9) 

This implies that the set of edges forms a sequence 
of nested subspaces satisfying the following two con- 
ditions: 

... C E-1 C EO C El C ... 

The reconstruction of the edges is then carried out by 
a simple addition of all the scales 

where Ef is the set of edges at  the lLfine~t’l scale and 
E, is the set of edges at  the “coarsesti1 scale. 

4 Computational scheme for feature 
extraction 

In order to address the problem of feature track- 
ing, it is important that the features have well-defined 
edges with the contour information well preserved. We 
present the following scheme defined in [6] to extract 
well defined features from oceanographic images. This 
scheme incorporates parallelism by distributing the in- 
put pixels across a series of processors. This will lead 
to the efficient computation of transforms and extrac- 
tion of features. 
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Step 1. Generation of set of wavelet plane in paral- 
lel. Apply Starck-Murtagh-Bijaoui wavelet transform 
to the input image in parallel and generate a wavelet 
plane. Then, Starck-Murtagh-Bijaoui will be applied 
to the input images which are distributed across a 
number of processors. This will generate a set of 
wavelet planes. 

5 Experimental results [6] 

The following figures 2(a,b,c,d) show a character- 
ization of features obtained using methods described 
in [6] .  

Figure 2. 
Step 2 .  Supress coefficient below a certain value in 

parallel. Make all the insignificant wavelet coefficients, 
that is all the coefficients below a user specified value 
zero. This threshold will often depend on the appli- 
cation. This will be done in parallel of each wavelet 
plane. 

Step 3. Reconstruct the edge image with the re- 
maining coefficients in parallel. This consists of two 
steps. First, image reconstruction is done for each 
wavelet plane in parallel. Then the images correspond- 
ing to different wavelet planes will be unified using a 
parallel union algorithm. The resulting reconstructed 
image will be stored in one of the processors. 

Step 4. Choose a threshold and apply the edge 
detection algorithm described in the previous section. 

Step 5 .  If the edges are not satisfactory, j = j + 1, 
decrement the threshold and goto Step 4. 

Such a scheme has several advantages: 

(1) The transform can be carried out with integer 
values only, and in parallel. 

( 2 )  Structure contours are preserved 

(3) The algorithm can be easily modified to work 
on intermediate scales (other than dyadic). See figure 
1. 

(a) Original image 

(b) Edge image Ej at T = 2 

Figure 1: Computational Architecture 
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All these images have weak edges and a significant 
amount of noise. 

5.1 Comparision with conventional detec- 
tors [SI 

In this section we compare our method for detecting 
edges with the the most frequently used conventional 
edge detectors such as the Sobel edge operator and the 
morphological edge detector. For details see [6]. 

Sobel operator 
The Sobel edge operator consists of two convolution 
kernels as shown in the following figure S(a,b,c). The 
kernel shown in (a) is sensitive to horizontal edges 
while (b) is sensitive to vertical edges. 

The output of the Sobel edge operators to a typ- 
ical satellite image is shown in the following figure, 
show the output of Sh and S, respectively. Notice the 
weakness of the response to the Sobel operator to the 
edges of the gulf stream and other eddies. (c) Edge image Ej+l at T = 3 

Morphological operator 
Another approach to edge detection involves a non- 
linear method based on morphological filtering of an 
image. Morphologic operators can be visualized as 
working with two images, the original image and the 
structuring element. The dilation of a binary image f 
by a structuring element S is defined as 

f @ s = { a + b ( a  E f A b E s} (11) 
The erosion of a binary image f by 5’ is defined as 

f e S = { a - b ~ a E f A b E S }  (12) 
The “dilation” d of a gray-scale image f by a struc- 
turing element S is defined as 

(d) Complementary image PVj 

4 i , j )  = MAX(f(i + z , j  + Y) @ S(Z1 Y)), (13) 

where x and y are the coordinates of a cell in S whose 
center cell is the origin, and (i + x , j  + y) is in the 
domain o f f .  Similarly, “erosion” of a gray-scale image 
f by a structuring element S is defined as 

e ( i , j )  = M I N ( f ( i  + z , j  + y) 6 S(z,y)). (14) 

The morphological gradient of an image, say GI is 
given by 

G = d ( i , j )  - e ( i , j ) .  (15) 
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6 Conclusions and future work 
Figure 3. 

Grayscale Threshold Value = 64 

(a) Sobel Gradient 

(b) Morphological Gradient 

This paper presents a methodology to exploit paral- 
lelism is an algorithm developed in [6]. The emphasis 
is on deriving a current value of the wavelet coefficient 
during the partitioning of wavelet planes. 
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